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High-Performance Workflows

An 
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in situ 
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library.
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Design Choices

A balance between user’s view of data (productivity) and the workflow’s efficient 
movement of data (performance)
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Design Criteria LowFive Choices

User’s view of data (model or schema) HDF5 data model

In situ transport mechanism (direct, 
staging)

Direct, parallel, MPI point to point 
messages

Software stack intercept location High-level HDF5 metadata

Software design Standalone HDF5 VOL plugin



In Situ Data Transport Mechanism

Direct
• No additional resources or services
• Simple, point-to-point communication
• Tightly coupled producer and consumer 

(synchronous)
• A staging area could still be a 

producer/consumer task
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Staging
• Dedicated resources for transport
• Decouple producer from consumer 

(could allow overlap)
• May require launching a separate service
• Shared access (could also involve locking)

Logically, 
LowFive looks 
like a staging 
area, and it 
could have been 
implemented 
this way.

The actual 
implementation of 
LowFive, however, is 
direct point-point 
communication.



Software Stack Intercept Location
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• POSIX level (Burst buffer systems)
• Catch all I/O
• No metadata



Software Stack Intercept Location

5

• Application level (Conduit, Bredala)
• All metadata
• Change user code

• POSIX level (Burst buffer systems)
• Catch all I/O
• No metadata



Software Stack Intercept Location
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• Application level (Conduit, Bredala)
• All metadata for data transport
• Change user code

• POSIX level (Burst buffer systems)
• Catch all I/O
• No metadata

• High-level I/O API (LowFive)
• Rich metadata for data transport
• Little/no change to user code



Software Stack

HDF5, NetCDF-4, HighFive, H5Py
I/O libraries

LowFive
Data transfer

HDF5
Data model

MPI
Message passing

DIY
Block parallelism

Virtual Object Layer (VOL)

Scientific Simulations, AI, ML Frameworks 
Applications

• DistMetadataVOL
• MetadataVOL
• VOLBase
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LowFive Metadata Tree

HDF5 Data Model
• Hierarchical data model much like 

a UNIX file system
• Root is the file
• Internal nodes are groups
• Leaves are datasets or other 

objects (e.g., attributes)

LowFive Data Model
• Our in-memory replica of HDF5 

metadata
• One object for every HDF5 

object
• Shallow or deep data pointer or 

copy

Our own LowFive in-memory replica of HDF5 data model.

File
name: step1.h5

Group
name: group2

Dataset
name: particles
type: float32
dataspace: 1d
data: ptr_particles
ownership: lowfive 

Group
name: group1

Dataset
name: grid
type: uint64
dataspace: 3d
data: ptr_grid 
ownership: user

children

parent

children children

parent

parent
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Data Redistribution

Producer Task w/ 6 Processes Consumer Task w/ 4 Processes

Proc. 0

Proc. 2

Proc. 1

Proc. 3

Proc. 4

Proc. 5

Proc. 0 Proc. 2Proc. 1 Proc. 3

Example of data redistribution from a producer task with 6 processes decomposed row-wise to a consumer task with 4 
processes decomposed column-wise. The problem is that neither the producer nor the consumer task knows anything about 
the other’s decomposition. 9



Synthetic Benchmarks

Number of processes and data sizes for 
synthetic benchmark experimentsDifferent experiment scenarios

Producer Consumer

Pure
MPI

LowFive
Memory

LowFive
File

PFS

Pure
HDF5

Data
Spaces
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Synthetic Benchmarks: In Situ vs. Storage

Time to write/read grid and particles between 1 producer task and 1 consumer 
task, comparing LowFive file and memory modes, in a weak scaling regime.
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Synthetic Benchmarks: Overhead of Using LowFive vs. Pure 
HDF5 for File I/O

Time to write/read grid and particles, comparing LowFive file 
mode with pure HDF5 file, in a weak scaling regime.
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Synthetic Benchmarks: Overhead of Using LowFive vs. 
Pure MPI for Message Passing
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Time to write/read grid and particles comparing LowFive memory 
mode, with pure MPI communication, in a weak scaling regime. 13



Synthetic Benchmarks: 10X Data Size

Time to write/read large size grid and particles, comparing LowFive 
memory mode, DataSpaces, and pure MPI, in a weak scaling regime
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• 107 regularly structured 
grid points + 107 
particles per producer 
process

• 190 MiB of data per 
producer process

• 0.55 GiB of data per 
consumer process (3:1 
producer:consumer 
procs)

• Total data size at the 
largest scale tested is 
0.55 TiB.

20%
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Science Workflow: Cosmology

Time to write/read data between Nyx and Reeber using LowFive memory mode, HDF5 files, and AMReX plotfiles 
demonstrates that LowFive in situ data transport is 20X faster at scale than the best I/O solution (AMReX plotfile format).

Both Nyx and Reeber 
were used “off the shelf” 
with no modifications to 
use LowFive (in the 
Henson workflow system)

Nyx Reeber

Dark matter particles
Image: https://crd.lbl.gov
2021

Merge tree
Image: Agarwal et al.
2004
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Recap

LowFive
• In situ data transport layer for workflows
• HDF5 data model
• Built as an HDF5 VOL plugin
• Allows bypassing storage and sending data over MPI
• Redistributes data between producer and consumer tasks
• Standalone software library that workflow systems can use
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Next Steps

• Finish implementing missing functions in our metadata

• Continue to test on applications and their software stacks

• Producer – consumer synchronization and flow control

• Integrate in workflow systems driving further development

• Henson can use LowFive (Nyx + Reeber use case)

• We are also developing a new workflow system---Wilkins---on top of 
Henson and LowFive
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Use Cases and Deeper Software Stacks

Climate 
modeling 
software 
stack using 
NetCDF 
data model

Wilkins

LowFive

HDF5

MPI

E3SM Climate Codes

SCORPIO I/O Library

NetCDF-4

Wilkins

LowFive

HDF5

MPI

Nyx Cosmology Code

AMReX AMR Library

Cosmology 
software 
stack using 
AMR data 
model

Wilkins

LowFive

H5py

MPI

Keras

AI software stack using 
tensor data model

Henson

Henson Henson

HDF5
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